Quality forms noble metals

DENTAL ALLOYS
Processing Manual

ivoclar
vivadent:
passion vision innovation
The fabrication of long-lasting, high-quality restorations that enhance the well being of the patient is a daily challenge in the dental laboratory. This task demands high-performance products and professional processing techniques. This manual provides useful information that will help you to use dental alloys correctly and thus achieve successful results.
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission</td>
<td>4</td>
</tr>
<tr>
<td>Our know-how</td>
<td>5</td>
</tr>
<tr>
<td>The pattern</td>
<td>6</td>
</tr>
<tr>
<td>Framework considerations</td>
<td>7</td>
</tr>
<tr>
<td>Sprue design</td>
<td>8</td>
</tr>
<tr>
<td>Investing</td>
<td>9</td>
</tr>
<tr>
<td>Investing and preheating</td>
<td>10</td>
</tr>
<tr>
<td>Melting methods</td>
<td>11</td>
</tr>
<tr>
<td>Casting methods</td>
<td>13</td>
</tr>
<tr>
<td>Divesting</td>
<td>14</td>
</tr>
<tr>
<td>Processing</td>
<td>15</td>
</tr>
<tr>
<td>Oxidation</td>
<td>17</td>
</tr>
<tr>
<td>Veneering</td>
<td>18</td>
</tr>
<tr>
<td>Joining technique</td>
<td>19</td>
</tr>
<tr>
<td>Hardening / Removal of oxide layer / Polishing</td>
<td>21</td>
</tr>
<tr>
<td>Note</td>
<td>22</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>23</td>
</tr>
</tbody>
</table>
Ivoclar Vivadent offers a comprehensive range of products for fabricating highly aesthetic and technically demanding dental restorations. Apart from conducting research and developing innovative materials, we strive to supply you with products that are of a consistent high quality and outstanding bio-compatibility. The successful clinical application of our alloys confirms their high standard.

In order to process a material correctly, the user must know the material itself as well as the corresponding processing techniques. In addition to providing detailed instructions on how to process the individual products, we offer dental professionals continuing education opportunities at the ICDE (International Center of Dental Education). Our continuing education program is offered internationally to ensure the same high level of excellence throughout the world.
A precision pattern, outstanding casting results and professional processing techniques form the prerequisites for fabricating long-lasting, functional restorations. Very often, technicians attempt to resolve problems without attempting to identify their origins.

As a result of our more than 100 years of experience in researching and producing dental alloys, we possess extensive know-how in this field and therefore offer reliable products and services.

This manual provides you with important information for fabricating dental restorations of consistent high quality.
Framework fabrication using crown and bridge alloys

The framework is a smaller reproduction of the shape and contour of the tooth. Crowns must have a minimum thickness of 0.3 mm and abutment crowns must be of 0.5 mm in thickness after finishing to ensure adequate stability of shape. Retention aids must be provided, depending on the bonding system used. The lingual or/and occlusal surfaces are produced in metal or prepared for veneering according to the instructions of the manufacturer of the veneering material. The transition between the veneer and the metal framework must not be located in the occlusal stress-bearing region. The masticatory forces must be functionally supported in the incisal and occlusal regions.

Framework fabrication using ceramic bonding alloys

The framework is a smaller reproduction of the shape and contour of the tooth. The dental ceramic is subsequently applied in an even layer. In the fabrication of frameworks, you must make sure that crowns demonstrate a minimum thickness of 0.3 mm and abutment crowns of 0.5 mm after finishing. These measurements are prerequisites for ensuring the strength of the metal framework and a longlasting metal-ceramic bond.
The bridge wax pattern must take dimension and function into consideration

1. Wax pattern of the tooth
2. Reduction for the application of the veneering material
3. Forming of the points of contact and connections
4. Inspection of the occlusal and proximal points

Important:
The diameter of the internal connectors and the wall thickness must be adequately designed according to the alloy used! The framework should be designed to give the ceramic proper support (ceramic thickness of max 2.0 mm).

- Single width of the connector = standard strength
- Double width of the connector = two-fold strength
- Double height of the connector and single width = eight-fold strength
Sprue design

Sprues are designed for unrestricted flow of the molten alloy to control the cooling process. Adequately sized sprues are essential.

The sprues must be attached to the thickest part of the pattern and should be approximately 2.5–3.5 mm in length. The sprue attachment should be flared.

The distance between the wax pattern and the reservoir allows the alloy to solidify quickly and evenly.

Particularly in bulky areas (interdental spaces, pontics or large crowns) cooling fins of 1 mm can be applied.

The amount of the alloy required for the casting is calculated after the wax pattern and sprues have been weighed:

\[
\text{Weight of the wax pattern and sprues in grams} \times \text{density of the alloy} = \text{required amount of alloy in grams}
\]
If the sprues are correctly designed and the wax pattern suitably positioned in the casting ring, casting of the alloy is quickly accomplished and the solidification process is controlled.

It is advisable to use a liner inside the investment ring to allow expansion of the investment material. When you select the casting ring, make sure that the investment will be sufficiently thick on the sides and the top.

The reservoir must always be positioned in the hottest part of the ring and the wax pattern must be positioned in a cooler part of the ring.

Use sprues with the largest possible diameter for casting palladium-based and base metal alloys.
The best casting results are achieved if excess wax surface tension reducer is entirely removed and the setting time of the investment is observed.

It is essential that wax is completely eliminated during the preheating process.

Phosphate-bonded or Gypsum-bonded investment materials are suitable for the investment procedure. Phosphate-bonded investment materials are suitable for conventional or speed heating. Gypsum-bonded investment materials can only be used if the preheating temperature does not exceed 750 °C.

The investment material is heated according to the instructions of the manufacturer. The prescribed final temperature is shown in the alloy chart and the Instructions for Use of the different alloys.
Ivoclar Vivadent alloys can be melted using an electric resistance furnace, a propane-oxygen torch or high-frequency casting equipment. The alloys can be melted either in a ceramic and/or graphite crucible (see alloy property chart). A separate crucible should be used for every alloy.

Torch melting
1. Carbon-rich zone
2. Reduced zone
3. Oxidizing zone

Alloys are melted in the reduced zone. If you use the Ivoclar Vivadent torch, we recommend that you work with 0.35 bar for propane and 0.7 bar for oxygen.
Melting methods

Induction melting
1. High-frequency coil
2. Cooling water (inlet)
3. Cooling water (outlet)
4. High-frequency current
5. Crucible
6. Alloy

Resistance melting
1. Heating spiral
2. Power supply
3. Thermocouple
4. Crucible
5. Alloy

Overheating of the alloy must be avoided. Please see the alloy chart for the casting temperature.
Casting methods

Vacuum casting
1. Inert gas (argon)
2. Vacuum process
3. Compressed air process

When you reuse precious and reduced gold alloys, the ratio of new material to used material is 1:1. Base metal alloys should never be reused.
Sprues/Sprue buttons must be carefully sandblasted before they are reused. Contamination with the abrasive must be avoided.

Straight arm centrifugal casting machine
1. Counter weight
2. Thermocouple
3. Casting ring
Divesting

After the casting has been made, allow it to cool to room temperature. Next, carefully divest the piece using plaster shears. Remove the investment material within the casting using suitable instruments if possible.

Do not use a hammer for the divesting to prevent damaging the metal structure.

If you use an abrasive blasting device, we recommend using pure aluminium oxide (Al₂O₃) grit measuring 50–100 microns and air pressure between 2–4 bar. (See Instructions for Use)
Processing

Rotary tungsten carbide instruments or ceramic-bonded burs are used to process crown and bridge alloys. Polishing is done with rubber polishers of progressively smaller grit size as well as polishing brushes and polishing pastes. The entire framework has to be polished before the veneering material is applied (see part on Polishing). Sandblast the contact surfaces with non-recycled Al₂O₃ grit according to the instructions of the manufacturer of the veneering material.

Always work in one direction on the metal surface to avoid overlaps and the formation of cavities.

Do not use diamond-coated instruments. Diamond particles may become embedded in the alloy and form bubbles in the ceramic during firing.

Tungsten carbide burs may be used for gross reduction. Ceramic-bonded grinding instruments are used for fine finishing of ceramic bonding alloys. Use different burs for every alloy to prevent contamination. It is advisable to use less speed and pressure on soft alloys.
Carefully air abrade the framework with aluminium oxide of 50–100 micron grit size at approx. 2–4 bar. Air abrading improves the mechanical bond, as it roughens the surface of the piece and substantially increases its surface area.

To prevent abrasive grit from becoming embedded in the alloy, we recommend blasting the alloy using the specified pressure and holding the jet nozzle at an angle.

A contaminated metal surface may cause bubbles to form in the ceramic during the firing process. Before any other work is done (application of ceramic or organic veneering material), the metal framework must be brushed under running water and cleaned with steam or in an ultrasonic bath.

Use only pure Al₂O₃ as disposable abrasive grit to blast alloy surfaces.
Drying after the cleaning process is important. Oxidize the framework according to the prescribed temperature and time (See alloy chart). Place the frameworks on the firing tray and provide adequate support. After oxidation, check the framework for porosity and irregularities in the oxide layer. Re-finish and reoxidize if necessary.

Depending on the type of alloy used, pickling or sandblasting of the oxide layer may be required after oxidation firing. (See Instructions for Use). Next, thoroughly clean the framework in an ultrasonic bath or steamer.

The oxidation firing establishes the optimum surface for porcelain bonding. Oxidation is considered to be a cleansing firing. It also allows the quality of the framework surface to be assessed.

The temperature accuracy of the ceramic furnace is important for all firings. Consequently, the furnace temperature must be regularly calibrated.

To prevent the temperature from exceeding the oxidation temperature, the ideal rate of temperature increase is 60 °C per minute.
Veneering

Veneering with inorganic veneering materials
Prior to veneering the alloy surface, opaque it according to the directions of the manufacturer. The veneering procedure should be conducted according to the recommendations of the manufacturer.

Veneering with ceramics
The processing instructions for the ceramic must be observed. The opaquer will cover the framework more successfully if it is applied in two layers. The initial coat should be applied thinly, while the second one should provide full coverage.

To achieve a strong bond, the coefficient of thermal expansion (CTE) of the ceramic and metal must be compatible. The CTE of ceramic alloys is given in the alloy chart and the Instructions for Use of the different alloys.
Joining technique

Suggested alloy-solder combinations are shown in the alloy property chart. When the solder is selected, the difference between the soldering temperature and the solidus temperature of the alloy as well as the firing temperature of the ceramic must be taken into consideration. A suitable fluxing agent should be used, depending on the melting temperature of the solder. The soldering surface should be clean and adequately large for all the soldering joints. The surfaces must be enlarged for soldering applications in interdental areas. The ideal soldering gap should measure 0.05–0.2 mm.

Presoldering (prior to ceramic application)

The soldering investment should be as small as possible. It is preheated in the furnace at max. 600 °C (base metal alloys max. 400 °C). The soldering site must be easily accessible to ensure even temperature distribution. The fluxing agent can be placed at this stage.

When using a propane-oxygen torch, the pressure of the oxygen should be set at 0.35 bar and that of natural gas at 0.15 bar. The reducing part of the flame should be used. Heat the solder and dip it in High Fusing Bondal Flux agent. Apply the fluxing agent on the connector surfaces. Heat the surface to be soldered with the torch (neutral setting of the flame). Introduce the solder from the opposite side of the flame. The solder always flows to the hottest area. Once the joint is filled, remove the torch and allow the piece to cool.

1 Alloy
2 Diffusion layer
3 Solder
Joining technique

Postsoldering in the furnace (post ceramic application)
Cover ceramic surfaces with wax and invest as described. Remove wax with boiling water. Carefully apply Bondal Flux to the connector site. Do not allow the ceramic to come in contact with the fluxing agent. Heat the tip of the solder and form a ball. This ball will be used as a reservoir when the soldering site is filled. Cut the solder approx. 4 mm from the ball and dip it into the fluxing agent. Place the solder on the soldering site and make sure that it touches the two joint surfaces. Slowly place the soldering base in the ceramic furnace at 400 °C. Increase the temperature at a rate of 60 °C per minute until the melting point of the solder is reached. When the solder flows, remove the piece and allow it to cool.

Laser welding
In the laser welding technique, an alloy with a similar composition to that of the crown and bridge frameworks is used to join these parts. Suitable laser welding wires are shown in the alloy property chart. Please follow the recommended welding parameters of the different equipment manufacturers during the laser welding process.
Hardening
Controlled heat treatment of an alloy can change its physical values. This process is not required for base metal alloys or alloys to which ceramic veneers are generally applied. The hardness of the alloy may have to be increased for telescope and conus crowns or customized attachments. The specifications for the heat treatment are provided in the alloy property chart and the different Instructions for Use.

Removal of oxide layer
After soldering or heat treatment, the oxide layer must be thoroughly removed to ensure the corrosion resistance of the alloy.

Pickling is carried out to remove the oxide layer from the surface, which could affect gingival tissue. The recommendations of the different manufacturers regarding the concentration and duration of the process must be observed.

Polishing
A polished surface offers optimal prerequisites for ensuring corrosion resistance. Polishing is carried out with rotary polishers. The direction of polishing should change constantly. The hardness of the alloy determines the pressure to be applied. Use a small amount of polishing paste on a rotary buffing disk to polish pieces to a high gloss. The direction of polishing should change constantly. Generally, a good polish not only enhances the aesthetic appearance of the surface, it also improves the chemical resistance (e.g. lower susceptibility to corrosion).
Indication
Alloys are specifically designed for different applications and approved for certain indications, based on their composition and the resulting physical properties.

Contraindication
If the patient is known to be allergic or sensitive to any of the ingredients mentioned, an alternative alloy should be selected. In addition, a physician should be consulted.

Side effects
In rare cases, sensitivity or an allergic reaction to the components of the alloy may occur.

Interaction
Different types of alloys in the oral cavity may cause galvanic reactions.

Notes of safety
In order to avoid any danger to health, alloys should be processed according to the safety regulations in force.
<table>
<thead>
<tr>
<th>Type of Defect</th>
<th>Possible Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fit of casting too tight</td>
<td>Improper investment mixing ratio
 Stored beyond the date of expiration
 Improper ratio of investment liquid to water
 Burn-out temperature too low</td>
</tr>
<tr>
<td>Fit of casting too loose</td>
<td>Improper investment mixing ratio
 Stored beyond the date of expiration
 Improper ratio of investment liquid to water</td>
</tr>
<tr>
<td>Incomplete casting</td>
<td>Burn-out temperature too low
 Melting temperature too low
 Patterns waded too thin
 Wrong spruing technique</td>
</tr>
<tr>
<td>Hot tears</td>
<td>Coarse or widely varying metal grain size
 Severely overheated alloy
 Thin cast section between thick sections
 Rapid cooling or quenching of alloy
 Excessive amount of alloy used
 Improper placement of wax patterns in casting ring</td>
</tr>
<tr>
<td>Casting fins</td>
<td>Improperly mixed investment
 Usage of a non compatible investment/ alloy combination
 Casting temperature too high
 Excess surfactant (debubblezer) on pattern surface
 Excessive vibration during investing
 Contamination of waxes and/or sprues</td>
</tr>
<tr>
<td>Rough surface</td>
<td>Improperly mixed investment
 Usage of a non compatible investment/ alloy combination
 Casting temperature too high
 Excess surfactant (debubblezer) on pattern surface
 Excessive vibration during investing
 Contamination of waxes and/or sprues</td>
</tr>
<tr>
<td>Shrinkage porosity</td>
<td>Length of sprues from wax pattern to reservoir too long
 Excessive amount of alloy used
 Tapered sprues at point of connection to wax pattern
 Mold temperature too high and/or overheated alloy
 Improper reservoir or wax pattern location</td>
</tr>
<tr>
<td>Gas porosity</td>
<td>Oxygen inclusion from improperly adjusted torch
 Overheated alloy
 Turbulence in alloy when entering mould (Spruing Technique)</td>
</tr>
<tr>
<td>Suck back porosity</td>
<td>Excessive amount of alloy used
 Improper reservoir, sprues and/or wax pattern location</td>
</tr>
<tr>
<td>Investment inclusion</td>
<td>Excessive surfactant (debubblezer)
 Sharp edges and corners at sprues / wax pattern junction
 Rough surfaces on the spruing system
 Investment breakdown
 Re-casting buttons contaminated with investment residue</td>
</tr>
</tbody>
</table>
DOUBLE-SHOOTING CHART

RERRECTIONS

TYPe of DEFEcT

<table>
<thead>
<tr>
<th>High-shine/polish not achieved</th>
<th>Improper polishing technique</th>
<th>Porosity in casting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxide layer too dark</td>
<td>Alloy contamination</td>
<td>Improper finishing/blasting</td>
</tr>
<tr>
<td>Oxide layer mottled</td>
<td>Alloy contamination</td>
<td>Improper finishing/blasting</td>
</tr>
<tr>
<td>Bubbles in opaque</td>
<td>Porosities in alloy substructure</td>
<td>Rough alloy surface preparation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contaminated surface</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Failure to pickle specific alloys</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-heating and / or drying time to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-heating and / or drying time to</td>
</tr>
<tr>
<td>Cracking of ceramic material</td>
<td>Uneven thickness of ceramic material</td>
<td>Incompatible coefficient of thermal expansion</td>
</tr>
<tr>
<td></td>
<td>Improper cooling (thermal shock)</td>
<td>Over or under firing of opaque and</td>
</tr>
<tr>
<td></td>
<td>Sharp edges on alloy surface</td>
<td></td>
</tr>
<tr>
<td>De-bonding of ceramic from metal framework</td>
<td>Improper treatment and / or oxidation</td>
<td>Alloy surface contaminated</td>
</tr>
<tr>
<td></td>
<td>Improper wetting of alloy with open porosities</td>
<td></td>
</tr>
<tr>
<td>Discoloration of ceramic material</td>
<td>Contaminated furnace muffle or flange</td>
<td>Use of silver containing alloys with</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voids/porosity in solder joint</td>
<td>Solder overheated</td>
<td>Excessive oxides during soldering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unequal temperature distribution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incorrect flux</td>
</tr>
<tr>
<td>Solder did not fill connector</td>
<td>Insufficient solder and / or wrong alloy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unit is covered with too much solder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unequal temperature distribution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incorrect flux</td>
</tr>
</tbody>
</table>

POSSIBLE CAUSE

- The correct powder/liquid ratio is used.
- Store investment materials beyond the date of expiration.
- The ratio of investment liquid to water.
- Ensure when utilizing metal casting rings.
- Burn-out temperature.
- Burn-out temperature.
- Melting temperature of the alloy.
- Mold is not filled too slowly (replace weak casting spring).
- Patterns are not waxed too thin.
- The reservoir is located in the heat center of the ring and the patterns are placed in a cooler area.
- The investment is sufficiently mixed.
- CAST ERROR.
- Contaminated wax and / or sprues.
- Sharp edges and corners at sprues / wax pattern junction.
- Unit is covered with too much solder investment.
- Unequal temperature distribution of the whole metal frame.
- Incorrect flux.
- Insufficient solder and / or wrong alloy.
- Unit is covered with too much solder investment.
- Unequal temperature distribution of the whole metal frame.
- Incorrect flux.

TYPE OF DEFECT

- Improper polishing technique.
- Porosity in casting.
- Alloy contamination.
- Improper finishing/blasting.
- Improper finishing/blasting.
- Porosities in alloy substructure.
- Rough alloy surface preparation.
- Contaminated surface.
- Failure to pickle specific alloys.
- Pre-heating and / or drying time to.
- Pre-heating and / or drying time to.
- Use of modelling liquid to re-wet.
- Incorporation of air into ceramic material.
- Pre-heating and / or drying time to.
- Pre-heating and / or drying time to.
- Use of grained alloy and replenish at least 50% new alloy when recasting buttons.
- Investment to fully set before burning out the mould.
- The heating rate for the burnout furnace.
- The reservoir is located in the heat center of the ring and the patterns are placed in a cooler area.
- The investment is sufficiently mixed.
- CAST ERROR.
- Contaminated wax and / or sprues.
- Sharp edges and corners at sprues / wax pattern junction.
- Unit is covered with too much solder investment.
- Unequal temperature distribution of the whole metal frame.
- Incorrect flux.
- Insufficient solder and / or wrong alloy.
- Unit is covered with too much solder investment.
- Unequal temperature distribution of the whole metal frame.
- Incorrect flux.

POSSIBLE CAUSE

- The correct powder/liquid ratio is used.
- Store investment materials beyond the date of expiration.
- The ratio of investment liquid to water.
- Ensure when utilizing metal casting rings.
- Burn-out temperature.
- Burn-out temperature.
- Melting temperature of the alloy.
- Mold is not filled too slowly (replace weak casting spring).
- Patterns are not waxed too thin.
- The reservoir is located in the heat center of the ring and the patterns are placed in a cooler area.
- The investment is sufficiently mixed.
- CAST ERROR.
- Contaminated wax and / or sprues.
- Sharp edges and corners at sprues / wax pattern junction.
- Unit is covered with too much solder investment.
- Unequal temperature distribution of the whole metal frame.
- Incorrect flux.

TYPE OF DEFECT

- Improper polishing technique.
- Porosity in casting.
- Alloy contamination.
- Improper finishing/blasting.
- Improper finishing/blasting.
- Porosities in alloy substructure.
- Rough alloy surface preparation.
- Contaminated surface.
- Failure to pickle specific alloys.
- Pre-heating and / or drying time to.
- Pre-heating and / or drying time to.
- Use of grained alloy and replenish at least 50% new alloy when recasting buttons.
- Investment to fully set before burning out the mould.
- The heating rate for the burnout furnace.
- The reservoir is located in the heat center of the ring and the patterns are placed in a cooler area.
- The investment is sufficiently mixed.
- CAST ERROR.
- Contaminated wax and / or sprues.
- Sharp edges and corners at sprues / wax pattern junction.
- Unit is covered with too much solder investment.
- Unequal temperature distribution of the whole metal frame.
- Incorrect flux.

POSSIBLE CAUSE

- The correct powder/liquid ratio is used.
- Store investment materials beyond the date of expiration.
- The ratio of investment liquid to water.
- Ensure when utilizing metal casting rings.
- Burn-out temperature.
- Burn-out temperature.
- Melting temperature of the alloy.
- Mold is not filled too slowly (replace weak casting spring).
- Patterns are not waxed too thin.
- The reservoir is located in the heat center of the ring and the patterns are placed in a cooler area.
- The investment is sufficiently mixed.
- CAST ERROR.
- Contaminated wax and / or sprues.
- Sharp edges and corners at sprues / wax pattern junction.
- Unit is covered with too much solder investment.
- Unequal temperature distribution of the whole metal frame.
- Incorrect flux.
Review proper polishing procedures
Check for porosity in casting

Check for alloy contamination
Re-accomplish finishing/blasting procedures

Check for alloy contamination
Re-accomplish finishing/blasting procedures

Check for porosities in alloy substructure
Eliminate rough alloy surface preparation
Check for contaminated alloy surface (do not touch porcelain bearing areas after oxidation)
Ensure pickling is accomplished for specific alloys
Increase pre-heating and / or drying time
Decrease pre-heating and / or drying temperature

Ensure the alloy substructure is free of porosity
Ensure the opaque surface is free of bubbles
Check firing parameters to ensure complete sintering
Ensure sufficient vacuum during firing
Use only water to re-wet porcelain powders (do not re-wet with modelling liquid)
Avoid incorporation of air into ceramic materials
Increase pre-heating and / or drying time
Decrease pre-heating and / or drying temperature

Design substructures to allow an even thickness of ceramic material
Check alloy / ceramic for compatible coefficient of thermal expansion
Ensure proper cooling to avoid thermal shock
Avoid over or under firing of opaque and / or dentine
Eliminate sharp edges when finishing alloy surface

Ensure proper heat treatment and / or oxidation of alloy surface
Check for contaminated alloy surface (do not touch porcelain bearing areas after oxidation)
Ensure proper wetting of alloy with opaque

De-contaminate furnace muffle and / or firing tray
Do not use silver containing alloys with non-silver compatible ceramic materials

Do not overheat solder
Avoid excessive oxides during soldering (use reducing zone of flame)
Preheat the solder assembly prior to soldering
Use correct flux

Use sufficient solder to fill joint
Check solder gap for proper dimensions and surface finish
Avoid excessive oxides during soldering (use reducing zone of flame)
Blast connector area with 50 micron aluminum oxide prior to investing
Do not cover unit with too much solder investment
Preheat the solder assembly prior to soldering
Use correct flux